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Overview

• Noise in tomography
• Deep learning for denoising
• Problem statement
• Denoising without supervision
• Results

• Micro-tomography
• Dynamic micro-tomography
• X-ray diffraction CT

• Conclusion and Outlook
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Tomography
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Gives rise to a linear system 

Can be solved with backprojection-type 
algorithms (such as FBP)

xrec = R y

Acquisition Reconstruction
(horizontal cross-section)

Stack of sinograms



Noise in tomography
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• In each pixel: noise intensity depends on signal intensity
• Noise is zero-mean (approximately correct after log-correction)

• May be due to unavoidable experimental constraints:
1. Dose limit on object (batteries heat up, etc)
2. Time-limited dynamic acquisition



Deep learning for denoising
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Convolutional neural networks have emerged as a powerful tool for denoising

A CNN is a function with thousands to millions of parameters
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Input Output

Convolutional neural network (CNN)

CNNθargmin
θ

Tuned to minimize:

Image + Noise "Clean image"



Training requires high-quality data
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Convolutional neural network (CNN)

Optimizing these parameters requires a high-quality dataset of 
paired noisy and low-noise training examples.

A CNN is a function with thousands to millions of parameters



Problem statement

Challenges in applying deep learning to synchrotron
tomography:

1. Generalizability: need to train for new kinds of objects
2. Supervision: need high-quality target data
3. Alignment: need perfect registration of input and target

images

Can we use deep learning for denoising without any
high-quality training data?
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Typical deep learning process
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...

Convolutional neural network (CNN)

Output

Collect as many "training examples" as possible

Input Target

Optimize model with thousands to millions of parameters

Apply to new data

CNN



Self-supervised image denoising

Approaches for self-supervised deep image denoising exist.

Assumptions:

1. Noise in adjacent pixels is uncorrelated
2. Noise is mean-zero

However: they do not take into account tomographic noise
model.
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Flaws in existing self-supervised approaches
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Noise2Self training fits the noise

Noise in adjacent pixels is correlated

Noise is mean-zero

Tomographic noise

Normal Gaussian noise

Noise2Self
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Noise in reconstruction
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Full dose Quarter dose Difference (R n)

A x = ynoisy =  y + n

Xrec = R (y + n) = R y + R n

Noise on detector gives rise to:

FBP-type algorithms are linear, so we get:
Reconstructed noise R n:

Smeared across lines

⇒ Pixels not independent

Detector noise n:
Is not necessarily additive
But notationally convenient

correlated pixels



Noise2Inverse
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?

? Noise is mean-zero

NX and NY are statistically independent (separate measurements)

CNNθargmin
θ



Noise2Inverse process
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Collect noisy measurements
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noisy target images

Apply to training data
(and new data)

CNN

Split measurements 

CNN



Results: Fuel cell reconstruction
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Tomobank 82: 1000 angles (30 KeV polychromatic) 1ms exposure



Results: Fuel cell reconstruction
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Results: Dynamic fuel cell reconstruction
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Acquisition

- 60 time steps
- 299.92 proj / time step
- 0.1 sec / time step

Problems:

1. Noise
2. Angular undersampling

Saving grace:

Interlaced sampling
299.92 proj / time step

Projection

Reconstruction

TomoBank 81: Dynamic fuel cell  @ SLS TOMCAT



Results: Dynamic fuel cell reconstruction
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T=i
T=i-1

T=i+1

Acquire time steps Interlaced sinograms

Single slice targetMulti-slice input

CNN

Train Noise2Inverse Multiple time steps 
(Counters undersampling)



Results: Dynamic fuel cell reconstruction

18

GridRec Paganin+GridRec Ours 
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Results: X-ray diffraction CT
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X-ray diffraction CT @ ESRF ID15a 

Ceramic

3 horizontal slices

11 channels corresponding to 
     scattering angles  (subset)

Virtual acquisition
time: ~70%

Virtual acquisition
time: ~20%

Original

Add synthetic noise

Acquire projections

20 min 14 min 4 min



Results: X-ray diffraction CT
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Acquire projections Split all sinograms

Train Noise2Inverse

Multi-channel targetMulti-channel input

CNN



Results: X-ray diffraction CT
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Results: Total-Variation minimization
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Practical observations

• Better results when using more projection data for input
than for target

• e.g.: Split sinogram in 4 parts, use 3 parts for input and
1 part for target

• Better results with more angles at the expense of
exposure time

• With parameter-efficient neural network (MS-D): no
overfitting to the noise observed

• With few projection angles: some blurring observed
• Artifacts not related to noise are not removed
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Outlook

• Field is rapidly developing, developments in:
• (Electron) microscopy
• MRI
• Tomography

• Undersampling: self-supervised techniques have been
developed for MRI. Computationally expensive.

• Self-supervision and classical methods:
• Center of rotation, acquisition geometry calibration
• Optimizing Paganin-filtering
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Conclusion

• Self-supervised denoising of tomographic reconstructions
is possible using deep convolutional neural networks

• No additional training data is necessary
• For optimal results: take into account statistical

independence and physical forward model
• 3D
• Dynamic 3D
• X-ray diffraction computed tomography

• Denoising accuracy exceeds variational techniques and
approaches supervised deep learning methods (trained
with ground truth data)
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Thank you

• Self-supervised denoising of tomographic reconstructions
is possible using deep convolutional neural networks

• No additional training data is necessary
• Denoising accuracy exceeds variational techniques and

approaches supervised deep learning methods (trained
with ground truth data)

• Hendriksen, et al. (2020). Noise2inverse: self-supervised deep convolutional denoising for tomography.
IEEE Transactions on Computational Imaging, http://dx.doi.org/10.1109/tci.2020.3019647

• Hendriksen, A.A., et al. Deep denoising for multi-dimensional synchrotron X-ray tomography without
high-quality reference data. Sci Rep (2021). https://doi.org/10.1038/s41598-021-91084-8
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Backup: Comparison to Noise2Self
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Practical challenges applying deep learning

Challenges in applying deep learning to synchrotron
tomography:

1. Generalizability: need to train for new kinds of objects
2. Supervision: need high-quality target data
3. Alignment: need perfect registration of input and target

images

Today we tackled supervision which has consequences for
generalizability and alignment.

28



Deep learning results: medical imaging
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Kang et al, 
A deep convolutional neural network using directional wavelets for low-dose
X-ray CT reconstruction.
Medical Physics, 2017



Deep learning results: synchrotron tomography
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Pelt et al, 
Improving Tomographic Reconstruction From Limited Data using 
Mixed-Scale Dense Convolutional Neural Networks
Journal of imaging 2018

Al 7075 sample from tomobank



Field is rapidly gaining popularity:

• Photographic imaging
• Lehtinen, et al (2018). Noise2Noise: learning image restoration without

clean data. PMLR.
• Batson, Royer (2019). Noise2Self: blind denoising by self-supervision.

PMLR.
• Krull, et al (2019). Noise2Void - learning denoising from single noisy

images. CVPR
• Quan, et al (2020). Self2self with dropout: learning self-supervised

denoising from single image. CVPR.

• MRI:
• Liu et al (2020). RARE: image reconstruction using deep priors learned

without ground truth. IEEE JSTSP
• Yaman et al (2020). Self-supervised learning of physics-guided

reconstruction neural networks without fully sampled reference data.

• Microscopy
• Kobayashi, et al (2020). Image Deconvolution Via Noise-Tolerant

Self-Supervised Inversion. ArXiv.
• Goncharova et al (2020). Improving Blind Spot Denoising for

Microscopy. ECCV. 31



Field is rapidly gaining popularity

• Tomography:
• Buchholz, et al (2019). Cryo-care: content-aware image

restoration for cryo-transmission electron microscopy
data. ISBI

• Hendriksen et al (2020). Noise2inverse: self-supervised
deep convolutional denoising for tomography. IEEE TCI
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