

Self-supervised deep denoising for synchrotron tomography

Allard Hendriksen

Thu 1 Jul 2021, ESRF Seminar

CWI: Daniël Pelt and Joost Batenburg PSI: Minna Bührer and Federica Marone ESRF: Nicola Vigano and Marco di Michiel Università degli Studi di Milano: Laura Leone and Marco Merlini

Overview

- Noise in tomography
- Deep learning for denoising
- Problem statement
- Denoising without supervision
- Results
 - Micro-tomography
 - Dynamic micro-tomography
 - X-ray diffraction CT
- Conclusion and Outlook

Tomography

Gives rise to a linear system

$\mathbf{A} \mathbf{x} = \mathbf{y}$

Can be solved with backprojection-type algorithms (such as FBP)

$$\mathbf{x}_{rec} = \mathbf{R} \mathbf{y}$$

Noise in tomography

- In each pixel: noise intensity depends on signal intensity
- Noise is zero-mean (approximately correct after log-correction)
- May be due to unavoidable experimental constraints:
 - 1. Dose limit on object (batteries heat up, etc)
 - 2. Time-limited dynamic acquisition

Deep learning for denoising

Convolutional neural networks have emerged as a powerful tool for denoising

A CNN is a function with thousands to millions of parameters

Tuned to minimize:

argmin
$$\| CNN_{\theta} (X + N_X) - (X) \|_2^2$$

 θ
Image + Noise ______ "Clean image"

Training requires high-quality data

A CNN is a function with thousands to millions of parameters

Optimizing these parameters requires a high-quality dataset of paired noisy and low-noise training examples.

Challenges in applying deep learning to synchrotron tomography:

- 1. Generalizability: need to train for new kinds of objects
- 2. Supervision: need high-quality target data
- 3. Alignment: need perfect registration of input and target images

Can we use deep learning for denoising without any high-quality training data?

Typical deep learning process

Optimize model with thousands to millions of parameters

Approaches for self-supervised deep image denoising exist.

Assumptions:

- 1. Noise in adjacent pixels is uncorrelated
- 2. Noise is mean-zero

However: they do not take into account tomographic noise model.

Flaws in existing self-supervised approaches

- - Noise in adjacent pixels is correlated
 - Noise is mean-zero

Noise2Self training fits the noise

X

Noise in reconstruction

correlated pixels

Noise on detector gives rise to:

A x = y_{noisy} = y + n

FBP-type algorithms are linear, so we get:

 $X_{rec} = R (y + n) = R y + R n$

Detector noise n:

Is not necessarily additive But notationally convenient

Reconstructed noise R n:

Smeared across lines

⇒ Pixels not independent

Noise2Inverse

$$\operatorname{argmin}_{\Theta} \| \operatorname{CNN}_{\Theta} (X + N_X) - (Y + N_Y) \|_2^2$$

N_x and N_y are statistically independent (separate measurements)
 Noise is mean-zero

Noise2Inverse process

Results: Fuel cell reconstruction

Tomobank 82: 1000 angles (30 KeV polychromatic) 1ms exposure

Results: Fuel cell reconstruction

Results: Dynamic fuel cell reconstruction

TomoBank 81: Dynamic fuel cell @ SLS TOMCAT

Acquisition

- 60 time steps
 299.92 proj / time step
 0.1 sec / time step
- 012 000 ; 0000

Problems:

- 1. Noise
- 2. Angular undersampling

Saving grace:

Interlaced sampling 299.92 proj / time step

Results: Dynamic fuel cell reconstruction

Results: Dynamic fuel cell reconstruction

Results: X-ray diffraction CT

- X-ray diffraction CT @ ESRF ID15a
- Ceramic
- 3 horizontal slices
- 11 channels corresponding to scattering angles (subset)

Add synthetic noise

Original

Results: X-ray diffraction CT

Results: X-ray diffraction CT

Results: Total-Variation minimization

XRD-CT (Virtual acquisition time: ~70%)

Practical observations

- Better results when using more projection data for input than for target
 - e.g.: Split sinogram in 4 parts, use 3 parts for input and 1 part for target
- Better results with more angles at the expense of exposure time
- With parameter-efficient neural network (MS-D): no overfitting to the noise observed
- With few projection angles: some blurring observed
- Artifacts not related to noise are not removed

Outlook

- Field is rapidly developing, developments in:
 - (Electron) microscopy
 - MRI
 - Tomography
- Undersampling: self-supervised techniques have been developed for MRI. Computationally expensive.
- Self-supervision and classical methods:
 - Center of rotation, acquisition geometry calibration
 - Optimizing Paganin-filtering

Conclusion

- Self-supervised denoising of tomographic reconstructions is possible using deep convolutional neural networks
- No additional training data is necessary
- For optimal results: take into account statistical independence and physical forward model
 - 3D
 - Dynamic 3D
 - X-ray diffraction computed tomography
- Denoising accuracy exceeds variational techniques and approaches supervised deep learning methods (trained with ground truth data)

Thank you

- Self-supervised denoising of tomographic reconstructions is possible using deep convolutional neural networks
- No additional training data is necessary
- Denoising accuracy exceeds variational techniques and approaches supervised deep learning methods (trained with ground truth data)

 Hendriksen, A.A., et al. Deep denoising for multi-dimensional synchrotron X-ray tomography without high-quality reference data. Sci Rep (2021). https://doi.org/10.1038/s41598-021-91084-8

Hendriksen, et al. (2020). Noise2inverse: self-supervised deep convolutional denoising for tomography. IEEE Transactions on Computational Imaging, http://dx.doi.org/10.1109/tci.2020.3019647

Backup: Comparison to Noise2Self

Approach	Reconstruct, split, denoise	Split, denoise, reconstruct	Split, reconstruct, denoise
Noise in input and target is independent Integrates physical forward model	it 😣	✓✓✓	0 0
	PSNR: 15.4	PSNR: 20.6	PSNR: 26.3

Challenges in applying deep learning to synchrotron tomography:

- 1. Generalizability: need to train for new kinds of objects
- 2. Supervision: need high-quality target data
- 3. Alignment: need perfect registration of input and target images

Today we tackled supervision which has consequences for generalizability and alignment.

Deep learning results: medical imaging

Kang et al, A deep convolution

A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Medical Physics, 2017

Deep learning results: synchrotron tomography

Al 7075 sample from tomobank

Pelt et al,

Improving Tomographic Reconstruction From Limited Data using Mixed-Scale Dense Convolutional Neural Networks Journal of imaging 2018

Field is rapidly gaining popularity:

Photographic imaging

- Lehtinen, et al (2018). Noise2Noise: learning image restoration without clean data. PMLR.
- Batson, Royer (2019). Noise2Self: blind denoising by self-supervision. PMLR.
- Krull, et al (2019). Noise2Void learning denoising from single noisy images. CVPR
- Quan, et al (2020). Self2self with dropout: learning self-supervised denoising from single image. CVPR.
- MRI:
 - Liu et al (2020). RARE: image reconstruction using deep priors learned without ground truth. IEEE JSTSP
 - Yaman et al (2020). Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data.
- Microscopy
 - Kobayashi, et al (2020). Image Deconvolution Via Noise-Tolerant Self-Supervised Inversion. ArXiv.
 - Goncharova et al (2020). Improving Blind Spot Denoising for Microscopy. ECCV.

- Tomography:
 - Buchholz, et al (2019). Cryo-care: content-aware image restoration for cryo-transmission electron microscopy data. ISBI
 - Hendriksen et al (2020). Noise2inverse: self-supervised deep convolutional denoising for tomography. IEEE TCI