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Tomography

Acquisition Stack of sinograms Reconstruction
(horizontal cross-section)

Gives rise to a linear system
Ax=y

Can be solved with backprojection-type
algorithms (such as FBP)

Xrec = RY



Noise in tomography

Projection . Reconstruction
=

TomoBank 81: fuel cell
@ SLS TOMCAT

= In each pixel: noise intensity depends on signal intensity
u NOise iS Zero-mean (approximately correct after log-correction)

= May be due to unavoidable experimental constraints:

1. Dose limit on object (batteries heat up, etc)
2. Time-limited dynamic acquisition 4



Deep learning for denoising

Convolutional neural networks have emerged as a powerful tool for denoising

Convolutional neural network (CNN)

Output

Non-linearity

Convolution

A CNN is a function with thousands to millions of parameters

Tuned to minimize:

argmin || CNNe (X + Nx) — (X)|I3

: N
Image + Noise "Clean image"



Training requires high-quality data

Input Target

A CNN is a function with thousands to millions of parameters

Optimizing these parameters requires a high-quality dataset of
paired noisy and low-noise training examples.



Problem statement

Challenges in applying deep learning to synchrotron
tomography:
1. Generalizability: need to train for new kinds of objects
2. Supervision: need high-quality target data

3. Alignment: need perfect registration of input and target

images

Can we use deep learning for denoising without any
high-quality training data?



Typical deep learning process

Collect as many "training examples" as possible

|n put Convolutional neural network (CNN) Ta rg et

= Bl

Optimize model with thousands to millions of parameters

CNN 0

Apply to new data




Self-supervised image denoising

Approaches for self-supervised deep image denoising exist.

Assumptions:

1. Noise in adjacent pixels is uncorrelated

2. Noise is mean-zero

However: they do not take into account tomographic noise
model.



Flaws in existing self-supervised approaches

Normal Gaussian noise

Tomographic noise

Hendriksen et al, IEEE TCI 2020

@ Noise in adjacent pixels is correlated

@ Noise is mean-zero

Noise2Self training fits the noise
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Noise in reconstruction

Full dose Quarter dose Difference (R n)

Kang et al, Med. Phys. 2017

correlated pixels

Noise on detector gives rise to: Detector noise n:
Is not necessarily additive

A X = Ynoisy = ¥ "}“\_/ But notationally convenient
Reconstructed noise R n:
FBP-type algorithms are linear, so we get: Smeared across lines

Xee =R(y+n)=Ry+Rn = Pixels not independent
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Noise2lnverse

Nx X X+Nx Y+NY Y Ny

argmin |cNNe (X 4 Nx) — (Y + Ny)|)3

@ Ny and Ny are statistically independent (separate measurements)

® Noise is mean-zero
12



Noise2lnverse process

Collect noisy measurements

Split measurements % 0

Optimize model with
noisy target images

Input

Apply to training data
(and new data)
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Results: Fuel cell reconstruction

Tomobank 82: 1000 angles (30 KeV polychromatlc) 1ms exposure
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Fuel cell reconstructi

Results

Noise2Inverse 2.5D CNN

Noise2Inverse 2D CNN
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Results: Dynamic fuel cell reconstruction

TomoBank 81: Dynamic fuel cell @ SLS TOMCAT

Projection .
B

Acquisition

- 60 time steps
- 299.92 proj / time step
- 0.1 sec/ time step

Reconstruction
Problems: » :

1. Noise
2. Angular undersampling

Saving grace:

Interlaced sampling : O

299.92 proj / time step
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Results: Dynamic fuel cell reconstruction

Acquire time steps Interlaced sinograms

P R
Train Noise2Inverse Multiple time steps
Multi-slice input Single slice target (counters undersampling)

e

CNN
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Results: Dynamic fuel cell reconstruction



Results: X-ray diffraction CT

X-ray diffraction CT @ ESRF ID15a HEEUTE rElEEiens
Ceramic
3 horizontal slices

11 channels corresponding to
scattering angles (subset)

Add synthetic noise

“O_rigi'nal ‘ V|rtua| ach|S|t|on V|rtua| ach|S|t|on
time: ~70% time: ~20%

20 min 14 min 4 min 19



Results: X-ray diffraction CT

Acquire projections Split all sinograms
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Train Noise2lnverse

Multi-channel input Multi-channel target

CNN
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Results: Total-Variation minimization
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Static fuel cell Dynamic fuel cell
(T =69) (Virtual acquisition time: ~70%)




Practical observations

= Better results when using more projection data for input
than for target

» e.g.: Split sinogram in 4 parts, use 3 parts for input and
1 part for target

= Better results with more angles at the expense of
exposure time

= With parameter-efficient neural network (MS-D): no
overfitting to the noise observed

= With few projection angles: some blurring observed

= Artifacts not related to noise are not removed
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» Field is rapidly developing, developments in:

= (Electron) microscopy
= MRI
= Tomography
= Undersampling: self-supervised techniques have been
developed for MRI. Computationally expensive.

= Self-supervision and classical methods:
= Center of rotation, acquisition geometry calibration
» Optimizing Paganin-filtering
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Conclusion

» Self-supervised denoising of tomographic reconstructions
is possible using deep convolutional neural networks

= No additional training data is necessary

= For optimal results: take into account statistical
independence and physical forward model
= 3D
» Dynamic 3D
= X-ray diffraction computed tomography

= Denoising accuracy exceeds variational techniques and
approaches supervised deep learning methods (trained
with ground truth data)
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Thank you

= Self-supervised denoising of tomographic reconstructions
is possible using deep convolutional neural networks

= No additional training data is necessary

= Denoising accuracy exceeds variational techniques and
approaches supervised deep learning methods (trained
with ground truth data)

= Hendriksen, et al. (2020). Noise2inverse: self-supervised deep convolutional denoising for tomography.
IEEE Transactions on Computational Imaging, http://dx.doi.org/10.1109/tci.2020.3019647

= Hendriksen, A.A., et al. Deep denoising for multi-dimensional synchrotron X-ray tomography without
high-quality reference data. Sci Rep (2021). https://doi.org/10.1038/s41598-021-91084-8
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Backup: Comparison to Noise2Self

s KA L
Phantom Noisy reconstruction Noise2Self Noise2Self
on reconstruction on sinogram
Approach Reconstru'ct, split, Split, denoise, Split, recolnstruct,
denoise reconstruct denoise
Noise in input and target is independent (x] (/] (/]
Integrates physical forward model (x] [X] (/]
PSNR: 15.4 PSNR: 20.6 PSNR: 26.3
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Practical challenges applying deep learning

Challenges in applying deep learning to synchrotron
tomography:
1. Generalizability: need to train for new kinds of objects
2. Supervision: need high-quality target data
3. Alignment: need perfect registration of input and target

images

Today we tackled supervision which has consequences for

generalizability and alignment.
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Deep learning results: medical imaging

(b) Quarter dose

(c) Imm training

Kang et al,
A deep convolutional neural network using directional wavelets for low-dose
X-ray CT reconstruction.
Medical Physics, 2017
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Deep learning results: synchrotron tomography

Al 7075 sample from tomobank

Pelt et al,

Improving Tomographic Reconstruction From Limited Data using
Mixed-Scale Dense Convolutional Neural Networks

Journal of imaging 2018
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Field is rapidly gaining popularity:

= Photographic imaging

Lehtinen, et al (2018). Noise2Noise: learning image restoration without
clean data. PMLR.

Batson, Royer (2019). Noise2Self: blind denoising by self-supervision.
PMLR.

Krull, et al (2019). Noise2Void - learning denoising from single noisy
images. CVPR

Quan, et al (2020). Self2self with dropout: learning self-supervised
denoising from single image. CVPR.

Liu et al (2020). RARE: image reconstruction using deep priors learned
without ground truth. IEEE JSTSP

Yaman et al (2020). Self-supervised learning of physics-guided
reconstruction neural networks without fully sampled reference data.

= Microscopy

Kobayashi, et al (2020). Image Deconvolution Via Noise-Tolerant
Self-Supervised Inversion. ArXiv.

Goncharova et al (2020). Improving Blind Spot Denoising for

Microscopy. ECCV. 31



Field is rapidly gaining popularity

= Tomography:
» Buchholz, et al (2019). Cryo-care: content-aware image
restoration for cryo-transmission electron microscopy

data. ISBI
= Hendriksen et al (2020). Noise2inverse: self-supervised
deep convolutional denoising for tomography. |IEEE TCl
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